首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   11篇
测绘学   1篇
大气科学   14篇
地球物理   47篇
地质学   41篇
海洋学   26篇
天文学   35篇
综合类   1篇
自然地理   8篇
  2021年   2篇
  2020年   3篇
  2019年   7篇
  2018年   5篇
  2017年   9篇
  2016年   10篇
  2015年   7篇
  2014年   9篇
  2013年   6篇
  2012年   4篇
  2011年   5篇
  2010年   10篇
  2009年   12篇
  2008年   10篇
  2007年   10篇
  2006年   10篇
  2005年   13篇
  2004年   6篇
  2003年   8篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1987年   2篇
  1983年   1篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
排序方式: 共有173条查询结果,搜索用时 171 毫秒
51.
Momo-iwa, Rebun Island, Hokkaido, Japan, is a dacite cryptodome 200–300 m across and 190 m high. The dome is inferred to have intruded wet, poorly consolidated sediment in a shallow marine environment. The internal structure of the dome is concentric, with a massive core, banded rim, and narrow brecciated border, all of which are composed of compositionally uniform feldspar-phyric dacite. Boundaries between each of the zones are distinct but gradational. The massive core consists of homogeneous coherent (unfractured) dacite and is characterized by radial columnar joints 60–200 cm across. The banded rim encircles the massive core and is 40 m wide. It is characterized by large-scale flow banding parallel to the dome surface. The flow banding comprises alternating partly crystalline and more glassy bands 80–150 cm thick. The outermost brecciated border is up to 80 cm thick, and consists of in situ breccia and blocky peperite. The in situ breccia comprises polyhedral dacite clasts 5–20 cm across and a cogenetic granular matrix. The blocky peperite consists of polyhedral dacite clasts 0.5–2 cm across separated by the host sediment (mudstone). The internal structures of the dome suggest endogenous growth involving a continuous magma supply during a single intrusive phase and simple expansion from the interior. Although much larger, the internal structures of Momo-iwa closely resemble those of lobes in subaqueous felsic lobe-hyaloclastite lavas.  相似文献   
52.
Suspended particles collected from surface seawater during the SEEDS II (Subarctic Iron Experiment for Ecosystem and Dynamics Study II) experiment were analyzed individually using an electron probe X-ray micro analyzer and characterized by size and elemental composition. Their numbers, relative abundances, and relative particle volume all showed clear differences between samples collected inside vs. outside the phytoplankton bloom that developed following the addition of iron. Throughout the study, Si-rich, Ca-rich and Organic particles were dominant and their number increased inside the fertilized patch; these particles accounted for 21%, 13% and 58% of the particles examined, respectively. Si-rich or Ca-rich particles commonly consisted of fragments of diatom frustules and coccolithophorids. There was consistently greater percentage of Ca-rich particles and lower percentage of Si-rich particles inside the patch than outside of it in number, but both types of these particles apparently occupied a larger volume inside the patch than outside of it. Organic particles, that showed having peaks in smaller diameter particles, increased apparently inside the patch with time after iron fertilization. The Organic particles had a more diverse mixture of both bio-related and crustal trace elements than the other types of particles. These results suggest that the increase in suspended particles following the iron enrichment was due to a combination of detrital material and live phytoplankton.  相似文献   
53.
54.
55.
The tsunami of 2004 in the Indian Ocean transported thousands of meters-long boulders shoreward at Pakarang Cape, Thailand. We investigated size, position and long axis orientation of 467 boulders at the cape. Most of boulders found at the cape are well rounded, ellipsoid in shape, without sharp broken edges. They were fragments of reef rocks and their sizes were estimated to be < 14m3 (22.7t). The distribution pattern and orientation of long axis of boulders reflect the inundation pattern and behavior of the tsunami waves. It was found that there is no clear evidence indicating monotonous fine/coarse shoreward trends of these boulders along each transect line. On the other hand, the large boulders were deposited repeatedly along the three arcuate lines at the intertidal zone with a spacing of approximately 136m interval. This distribution pattern may suggest that long-lasting oscillatory flows might have repositioned the boulders and separated the big ones from small. No boulders were found on land, indicating that the hydraulic force of the tsunami wave rapidly dissipated on reaching the land due to the higher bottom friction and the presence of a steep slope. We further conducted numerical calculation of tsunami inundation at Pakarang Cape. According to the calculation, the sea receded and the major part of the tidal bench (area with boulders at present) was exposed above the sea surface before the arrival of the first tsunami wave. The first tsunami wave arrived at the cape from west to east at approximately 130min after the tsunami generation, and then inundated inlands. Our calculation shows that tsunami wave was focused around the offshore by a small cove at the reef edge and spread afterwards in a fan-like shape on the tidal bench. The critical wave velocities necessary to move the largest and average-size boulders by sliding can be estimated to be approximately 3.2 and 2.0m/s, respectively. The numerical result indicates that the maximum current velocity of the first tsunami wave was estimated to be from 8 to 15m/s between the reef edge and approximately 500m further offshore. This range is large enough for moving even the largest boulder shoreward. These suggest that the tsunami waves that were directed eastward, struck the reef rocks and coral colonies, originally located on the shallow sea bottom near the reef edge, and detached and transported the boulders shoreward.  相似文献   
56.
Nanometer-size (<50 nm) precipitates of amorphous silica globules were observed in laboratory systems containing nontronite NAu-1, Shewanella oneidensis strain MR-1, and lean aqueous media. Their formation was attributed to the release of polysilicic acids at the expense of dissolving NAu-1, and subsequent polymerization and stabilization mediated by biomolecules. Rapid (<24 h) silica globule formation was confirmed in the immediate vicinity of bacterial cells and extracellular polymeric substances in all experimental systems that contained bacteria, whether the bacteria were respiring dissolved O2 or Fe(III) originating from NAu-1, and whether the bacteria were viable or heat-killed. Silica globules were not observed in bacteria- and biomolecule-free systems. Thermodynamic calculations using disilicic acid, rather than monomeric silica, as the primary aqueous silica species suggest that the systems may have been supersaturated with respect to amorphous silica even though they appeared to be undersaturated if all aqueous silica was assumed to be monomeric H4SiO4. The predominant aqueous silica species in the experimental systems was likely polysilicic acids because aqueous silica was continuously supplied from the concurrent dissolution of aluminosilicate. Further polymerization and globule formation may have been driven by the presence of polyamines, a group of biologically produced compounds that are known to drive amorphous silica precipitation in diatom frustules. Globules were likely to be positively charged in our systems due to chemisorption of organic polycations onto silica surfaces that would have been otherwise negatively charged. We propose the following steps for the formation of nanometer-size silica globules in our experimental systems: (i) continuous supply of polysilicic acids due to NAu-1 dissolution; (ii) polysilicic acid polymerization to form <50 nm silica globules and subsequent stabilization mediated by microbially produced polyamines; (iii) charge reversal due to chemisorption of organic polycations; and (iv) electrostatic attraction of positively charged silica globules to net negatively charged bacterial cells. Rapid, biogenic precipitation of silica may be common in soil and sediment systems that appear to be undersaturated with respect to amorphous Si.  相似文献   
57.
58.
The Sutter's Mill (SM) meteorite fell in El Dorado County, California, on April 22, 2012. This meteorite is a regolith breccia composed of CM chondrite material and at least one xenolithic phase: oldhamite. The meteorite studied here, SM2 (subsample 5), was one of three meteorites collected before it rained extensively on the debris site, thus preserving the original asteroid regolith mineralogy. Two relatively large (10 μm sized) possible diamond grains were observed in SM2‐5 surrounded by fine‐grained matrix. In the present work, we analyzed a focused ion beam (FIB) milled thin section that transected a region containing these two potential diamond grains as well as the surrounding fine‐grained matrix employing carbon and nitrogen X‐ray absorption near‐edge structure (C‐XANES and N‐XANES) spectroscopy using a scanning transmission X‐ray microscope (STXM) (Beamline 5.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory). The STXM analysis revealed that the matrix of SM2‐5 contains C‐rich grains, possibly organic nanoglobules. A single carbonate grain was also detected. The C‐XANES spectrum of the matrix is similar to that of insoluble organic matter (IOM) found in other CM chondrites. However, no significant nitrogen‐bearing functional groups were observed with N‐XANES. One of the possible diamond grains contains a Ca‐bearing inclusion that is not carbonate. C‐XANES features of the diamond‐edges suggest that the diamond might have formed by the CVD process, or in a high‐temperature and ‐pressure environment in the interior of a much larger parent body.  相似文献   
59.
Based upon our characterization of three separate stones by electron and X‐ray beam analyses, computed X‐ray microtomography, Raman microspectrometry, and visible‐IR spectrometry, Sutter's Mill is a unique regolith breccia consisting mainly of various CM lithologies. Most samples resemble existing available CM2 chondrites, consisting of chondrules and calcium‐aluminum‐rich inclusion (CAI) set within phyllosilicate‐dominated matrix (mainly serpentine), pyrrhotite, pentlandite, tochilinite, and variable amounts of Ca‐Mg‐Fe carbonates. Some lithologies have witnessed sufficient thermal metamorphism to transform phyllosilicates into fine‐grained olivine, tochilinite into troilite, and destroy carbonates. One finely comminuted lithology contains xenolithic materials (enstatite, Fe‐Cr phosphides) suggesting impact of a reduced asteroid (E or M class) onto the main Sutter's Mill parent asteroid, which was probably a C class asteroid. One can use Sutter's Mill to help predict what will be found on the surfaces of C class asteroids such as Ceres and the target asteroids of the OSIRIS‐REx and Hayabusa 2 sample return missions (which will visit predominantly primitive asteroids). C class asteroid regolith may well contain a mixture of hydrated and thermally dehydrated indigenous materials as well as a significant admixture of exogenous material would be essential to the successful interpretation of mineralogical and bulk compositional data.  相似文献   
60.
We present high angular resolution spectra taken along the jets from L1551 IRS 5 and DG Tau obtained with the Subaru Telescope. The position-velocity diagrams of the [Fe II] λ 1.644 μmemission line revealed remarkably similar characteristics for the two sources, showing two distinct velocity components separated from each other in both velocity and space with the entire emission range blueshifted with respect to the stellar velocity. The high velocity component (HVC) has a velocity of –200 ––300 km s-1 with a narrow line width, while the low velocity component (LVC) is around –100 km s-1 exhibitinig a broad line width. The HVC is located farther away from the origin and is more extended than the LVC. Our results suggest that the HVC is a well-collimated jet originating from the region close to the star, while the LVC is a widely-opened wind accelerated in the region near the inner edge of the accretion disk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号